学院简介

深圳大学高等研究院是深圳大学于2014年成立的一个包含本科与研究生培养、侧重跨学科教学与学术研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国内外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。

新闻动态

学术讲座——Poisson Geometry, Cluster Algebra, and Integrable Systems

发布时间:2019-01-16 | 浏览次数:

报告题目:Poisson Geometry, Cluster Algebra, and Integrable Systems
主讲嘉宾:李彦鹏
主持人:贺劲松 教授
地点:深圳大学理工楼L1-202  
时间:16:00-16:40, 2019年01月20日(周日)

 

报告摘要:
On one hand, for the Poisson-Lie dual K* of a compact semisimple Lie group K, we construct a Poisson manifold PT(K*) = C×T, using cluster theory, with a constant Poisson structure (here C isa certain polyhedral cone and T is a torus). The manifold PT(K*) carries natural completely integrable systems with action-angle variables.
On the other hand, a theorem of Ginzburg and Weinstein (1993) says that the Poisson manifolds k* and K* are Poisson isomorphic with their natural Poisson structures. A scaled Ginzburg-Weinstein isomorphism is a Poisson isomorphism of k^* and K*, when the Poisson structure on K* is scaled by a factor of s.
In this talk, I will explain how to combine the two proceduresdescribed above and conjecture that this will bring us global action-angle coordinates for any k.  In the case of K=SU(n), we showed this approach recovers the Gelfand-Cetlin completely integrable system on su(n).
This is joint work with A. Alekseev, A. Berenstein, B. Hoffman, and J. Lane.