学院简介

深圳大学高等研究院是深圳大学于2014年成立的一个包含本科与研究生培养、侧重跨学科教学与学术研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国内外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。

新闻动态

深圳大学高等研究院知名学者讲学计划第十六期——Raman spectroscopy and multipole interactions determining molecular polarizability at finite temperature from first principles

发布时间:2019-04-15 | 浏览次数:

报告题目:Raman spectroscopy and multipole interactions determining molecular polarizability at finite temperature from first principles

主讲嘉宾:Prof. Ding Pan(香港科技大学)

邀请人:李武研究员

时间:2019418日周四14:00    

地点:办公楼103    

 

报告摘要:

Knowledge of molecular polarizabilities in condensed phases provides important information about molecular crystals, and in general about materials composed of molecular or nano-building blocks. It is of great importance for the Raman spectroscopy. We propose a first-principles method based on electronic densities to compute molecular polarizabilities in condensed phases. The method includes all multipole interactions in addition to the dipole-dipole one, and it is applicable to any semiconductor or insulator. We present results for molecular polarizabilities of liquid water in a wide pressure-temperature range. We found that at ambient conditions, the dipole-induced-dipole approximation is sufficiently accurate and the Clausius-Mossotti relation may be used, e.g. to obtain molecular polarizabilities from experimental refractive indexes. However, with increasing pressure this approximation becomes unreliable and in the case of ice X, where covalent bonds are present, the dipole-induced-dipole approximation breaks down. Further, we calculated the Raman spectra of (bi)carbonate aqueous solutions at supercritical conditions, and obtained the Raman scattering cross sections of carbon species at high pressures and high temperatures from first principles. We will discuss how to use our results to interpret and guide spectroscopic measurements.    

 

 

 

嘉宾简介:

 

Prof. Ding Pan obtained BS in physics from University of Science and Technology of China in 2005, and ScD from Institute of Physics, Chinese Academy of Sciences in 2011. During the ScD study, he was a visiting researcher at the Fritz-Haber-Institute of the Max Planck Society in Berlin, Germany and a Thomas Young Centre Junior Research Fellow at the University College London, UK. After he worked as a postdoctoral researcher in the University of California at Davis (2011-2014) and the University of Chicago (2014-2016), he joined Hong Kong University of Science and Technology as an assistant professor in 2016.    

 

 

Prof. Pan has been developing and applying computational and numerical methods to understand and predict the properties and behavior of liquids, solids, and nanostructures from first principles. With the help of high-performance supercomputers, his group are seeking answers to the urgent and fundamental scientific questions relevant to sustainable development, e.g., water science, deep carbon cycle, and clean energy.