学院简介

    深圳大学高等研究院是深圳大学新成立的一个包含本科与研究生培养、侧重跨学科教学与研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。 ······

人员信息

翁国明

 

博士,研究员

联系邮箱: guoming.weng@szu.edu.cn

通讯地址:深圳市南山区南海大道3688号深圳大学高等研究院

ORICD:0000-0002-4710-8815

Researcher ID:C-1616-2018

 

教育背景:

2015,香港大学,化学,博士

2010,广州大学,有机化学,硕士

2007,惠州大学,应用化学,学士

 

工作经历:

2020.04—至今,深圳大学,研究员

2018.02—2020.03,纽约大学,博士后

2017.07—2018.02,耶鲁大学,博士后

2015.04—2017.06,香港中文大学,博士后

 

学术兼职:

美国电化学协会会员

美国纽约科学院会员

国际期刊Journal of Visualized Experiments客座编辑

国际期刊Current Chinese Chemistry客座编辑

国际期刊Materials International客座编辑

国际期刊Journal of Material Chemistry A, Journal of Power Sources, Chemical Communications, Ionics, Energy, ChemElectroChem, Energies, Batteries, Journal of Physics and Chemistry of Solids, Processes, Scientific Reports, Current Nanoscience等审稿人

 

所获奖项:

2018年Elsevier出版的《Journal of Power Sources》期刊杰出审稿人

2016年意大利国际电化学奖Fondazione Oronzio e Niccolò De Nora Fellowship

2012年香港大学杰出教学助理奖

2009年广东省教育厅南粤优秀研究生

 

研究兴趣:

本课题组致力于电化学能源技术和功能材料的研发与应用

 

1. 液流电池

液流电池是一种新型的使用液态“燃料” 的电化学能量转换装置。它的输出功率取决于电堆的大小和数量,而储能容量则取决于液态“能量液”(即电解液)的体积和浓度。因此,液流电池的规模设计非常灵活。相对于市场上常见的锂离子电池及实验室研究较多的锂硫及锌空电池等,这种液流电池更适合于大容量储能领域。它的未来发展空间广阔,将是可再生能源、智能电网、电动汽车(液态“能量液”替代汽油)、互联网+、智慧能源的重要组成部分。但是,相对商用的锂离子电池来说,传统液流电池的能量密度较低。同时,目前绝大部分的液流电池使用有毒及腐蚀性强的“能量液”。因此,本课题组将会致力于开发清洁高效的新一代液流电池,探索其工作机理,并实现其应用价值。

 

2. 锂/钠离子电池及其产品设计

“摇椅式”的锂/钠离子电池凭借其优异的循环性能,较高的比容量和能量密度,成为了在便携式电子设备、电动汽车等多种关键领域应用的能源设备首选。然而,为了满足未来的应用需求,此类电池的能量密度、快充性能、安全性和成本价格还需要进一步的优化。同时针对下一代智能应用,此类电池的下一代产品还需要设计成具备柔性、可穿戴性及透明性。因此,本课题组将会致力于研发一系列的相关重要部件应用于高性能的下一代锂/钠离子电池。

 

3. 酸碱电池(酸碱浓差电池)

工业生产中残留的废酸废碱一直是环境污染处理里面的一个重要问题,如何有效科学地处理这些腐蚀性强的废物是一个很有价值的研究课题。酸碱作为发电储能活性物质在世界上一直处于初级研究阶段,仅有少数研究组在进行相关研究。因此,废酸废碱一直都没有被人们视为可以被广泛利用的“能量”物质。本课题组将会在相关研究基础下继续探索及开发具备应用价值的酸碱电池或酸碱电化学装置。

 

4. 燃料电池

燃料电池是一种电化学的发电装置,可直接将化学能转化为电能,能量转化效率高,且无污染。各类燃料电池(例如氢燃料电池及直接醇类燃料电池)在未来的能源市场上仍然极其重要。同时,合理使用高效的燃料电池有利于保护环境和资源。但是,市售燃料电池的电极及隔膜材料成本过高,导致普及应用仍有一定困难。由于燃料电池与液流电池的电堆结构相似,这将会有利于本课题组同时研发适合于燃料电池与液流电池的实用价廉的复合电极材料、电化学催化剂和隔膜材料。

 

5. 金属电池

金属电池主要是指以电极电位较负的金属如锂、钠、钾、锌、镁、铝等作为负极的一类电池。其中,金属空气电池(以空气中的氧或纯氧作为正极的活性物质,例如锂-空气电池)和金属硫电池(以单质硫作为正极的活性物质,例如锂-硫电池)具有很高的比能量和能量转换效率。因此,它们都是非常高效的能量存储体系。但是,此类电池的商业化应用仍存在一些技术问题尚待解决(例如金属枝晶所引起的安全隐患及电池容量衰减等)。本课题组将会通过优化电池部件(例如电极材料及电解液)并系统研究其工作机理,找出切实可行的方法来进一步推动此类电池的商业化进程。

 

6. 光伏电池系统及电池产品规模化

二次电池与光伏电池一体化相结合的电力系统既可以在高峰时期有效地减少电网负荷,又将有望作为独立的“物联网”便携式电子设备的电力来源。显然,设计整合钙钛矿或有机太阳能电池与本课题组研发出的各种二次电池(例如液流电池、锂/钠离子电池和锂-硫电池等)是一个重要的研究课题。同时,本课题组会从防水防火防爆等安全性能方面进一步完善光伏电池系统的一体化设计整合。另外,本课题组会与工业界紧密合作,从而推动电池产品规模化生产及应用。

 

7. 功能材料

功能材料对于能源、医疗、工业和航空等技术领域至关重要。本课题组致力于开发与研究新型功能材料,其应用领域包括能源转换与储存(例如电池及电容器)、电磁屏蔽、光电催化(例如水分解及二氧化碳还原)、工业催化和生物医药等。具体研究内容为:i)利用先进的制备合成方法开发碳材料(例如石墨烯、纳米管和纳米孔碳)、二维过渡金属碳化物和氮化物(MXenes)材料、金属氧化物等及它们的复合材料;ii)利用多种加工成型方法如层层自组装、喷墨印刷等进一步优化性能和制备功能器件;iii)对功能材料及其器件进行深入表征和应用基础研究;iv)与工业界紧密合作,推动新材料的商业应用进程。

 

8. 功能有机分子材料

有机分子材料的应用领域广泛,一般分为有机高分子材料(例如聚噻吩及聚四氟乙烯)与有机小分子材料(例如2,6-二羟基蒽醌及三硫二丙烯)。本课题组将以应用为导向,合成制备及优化此类有机材料,并通过深入研究机理作用探索有机分子结构(或官能团)与材料性能的关系,积极推进新型有机分子材料的生产及应用。

 

发表论文:

[1] Jason Lipton†, G. M. Weng† (equally contributed), Jason Rohr, Hang Wang and André D. Taylor*, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale, Matter, 2020, Just Accepted, DOI: 10.1016/j.matt.2020.01.011. (New Top Journal)

[2] Jason Lipton, G. M. Weng, Mohamed Alhabeb, Kathleen Maleski, Jaemin Kong, Yury Gogotsi and André D. Taylor*, Mechanically strong and electrically conductive multilayer MXene nanocomposites, Nanoscale, 2019, 11 (42), 20295-20300. (Impact Factor=6.97)

[3] G. M. Weng, Yu Xie, Hang Wang, Christopher Karpovich, Jason Lipton, Junqing Zhu, Jaemin Kong, Lisa D. Pfefferle and André D. Taylor*, A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery, Angewandte Chemie, 2019, 131 (39), 13865-13871. (Impact Factor=12.257)

[4] G. M. Weng, Bin Yang, Chi-You Liu, Guan-Ying Du, Elise Y. Li and Yi-Chun Lu*, Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries, Energy Environmental Science, 2019, 12, 2244-2252. (Impact Factor=33.250)

[5] G. M. Weng*, Chi-Ying Vanessa Li and Kwong-Yu Chan*, An acid-base battery with oxygen electrodes: a laboratory demonstration of electrochemical power sources, Journal of Chemical Education, 2019, 96, 1701-1706. (Impact Factor=1.763)

[6] G. M. Weng, Jaemin Kong, Hang Wang, Christopher Karpovich, Jason Lipton, Francisco Antonio, Zachary Fishman, Hanyu Wang, Weiyong Yuan and André D. Taylor*, A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system, Energy Storage Materials, 2019, 24, 557-564. (CiteScore=15.09)

[7] G. M. Weng*, Chi-Ying Vanessa Li and Kwong-Yu Chan*, Exploring the ionic interfaces of three-electrolyte pH differential power sources, Electrochimica Acta, 2019, 320, 134526. (Impact Factor=5.383)

[8] G. M. Weng*, Chi-Ying Vanessa Li* and Kwong-Yu Chan, Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators, Energy, 2019, 167, 1011-1018. (Impact Factor=5.537)

[9] G. M. Weng, Jinyang Li, Mohamed Alhabeb, Christopher Karpovich, Hang Wang, Jason Lipton, Kathleen Maleski, Jaemin Kong, Evyatar Shaulsky, Menachem Elimelech, Yury Gogotsi and André D. Taylor*. Layer‐by‐layer assembly of cross‐functional semi‐transparent MXene‐carbon nanotubes composite films for next‐generation electromagnetic interference shielding, Advanced Functional Materials, 2018, 28 (44), 1803360. (Impact Factor=15.621)

[10] G. M. Weng*, Chi-Ying Vanessa Li* and Kwong-Yu Chan, Hydrogen battery using neutralization energy, Nano Energy, 2018, 53, 240-244. (Impact Factor=15.548)

[11] G. M. Weng*, Chi-Ying Vanessa Li and Kwong-Yu Chan*, High voltage pH differential vanadium-hydrogen flow battery, Materials Today Energy, 2018, 10, 126-131. (CiteScore=4.62)

[12] G. M. Weng, Zhejun Li, Guangtao Cong, Yucun. Zhou and Yi-Chun Lu*, Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries, Energy Environmental Science, 2017, 10, 735-741. (Impact Factor=33.250) Featured by Chemistry World published by The Royal Society of Chemistry, United Kingdom and major media in China.

[13] G. M. Weng, Long-Yin Simon Tam, Yi-Chun Lu*, High-performance LiTi2(PO4)3 anode for high-areal-capacity flexible aqueous lithium-ion batteries, Journal of Materials Chemistry A, 2017, 11764-11771. (Impact Factor=10.733)

[14] G. M. Weng, Chi-Ying Vanessa Li, Kwong-Yu Chan*, Cheuk-Wing Lee and Jin Zhong, Investigations of high voltage vanadium-metal hydride flow battery toward kWh scale storage with 100 cm2 electrodes, Journal of The Electrochemical Society, 2016, 163, A5180-A5187. (Impact Factor=3.120, This paper is part of the JES Focus Issue on Redox Flow Batteries–Reversible Fuel Cells)

[15] Zhejun Li, G. M. Weng, Qingli Zou, Guangtao Cong and Yi-Chun Lu*, A high-energy and low-cost polysulfide/iodide redox flow battery, Nano Energy, 2016, 30, 283-292. (Impact Factor=15.548)

[16] Regis P. Dowd Jr., Venkata Yarlagadda, Dhrubajit Konwar, Guangyu Lin, G. M. Weng, Chi-Ying Vanessa Li, Kwong-Yu Chan, and Trung Van Nguyen*, A study of alkaline-based H2-Br2 and H2-I2 reversible fuel cells, Journal of The Electrochemical Society, 2016, 163(14), F1471-F1479. (Impact Factor=3.120)

[17] G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan*, High voltage vanadium-metal hydride rechargeable semi-flow battery, Journal of The Electrochemical Society, 2013, 160, A1384-A1389. (Impact Factor=3.120)

[18] Huanqiao Li, G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan*, Three electrolyte high voltage acid-alkaline hybrid rechargeable battery, Electrochimica Acta, 2011, 56, 9420-9425. (Impact Factor=5.383)

[19] G. M. Weng, Yuzhi Su*, Zhaoqing Liu, Zhaoyi Wu, Shuang Chen, Jianhua Zhang and Changwei Xu*, Synthesis and properties of copolymer of 3-thienylmethyl disulfide and benzyl disulfide for cathode material in lithium batteries, Journal of Applied Polymer Science, 2010, 116, 727-735. (Impact Factor=2.188)

[20] G. M. Weng, Yuzhi Su*, Zhaoqing Liu, Jianhua Zhang, Wen Dong and Changwei Xu*, Electrochemical properties of novel organodisulfide poly1,2-bis(thiophen-3-ylmethyl)disulfane as cathode material for secondary lithium batteries, Energy, 2009, 34, 1351-1354. (Impact Factor=5.537)

 

著作:

[1] G. M. Weng, Marina Mariano Juste, Jason Lipton and André D. Taylor, MXene films, coatings and bulk processing, book chapter, in the edited book of “2D Metal Carbides and Nitrides (MXenes)”, Editors: Dr. Babak Anasori and Dr. Yury Gogotsi, 2019, Publisher: Springer Nature.

[2] Huanqiao Li, G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan, pH differential power sources with electrochemical neutralization, book chapter, in the edited book of “Electrochemically Enabled Sustainability: Devices, Materials and Mechanisms for Energy Conversion”, Editors: Dr. Kwong-Yu Chan and Dr. Chi-Ying Vanessa Li, 2014, Publisher: CRC Press.

 

申请专利:

[1] G. M. Weng, Yi-Chun Lu, Zengyue Wang and Longyin Simon Tam, Complexed iodine-based electrolyte and redox flow battery comprising the same, Chinese University of Hong Kong, 2020. (US Patent App. 16/558,814)

[2] G. M. Weng and André D. Taylor, A promising negative electrode for a long-life sodium-ion battery, New York University and Yale University, 2019. (Patent filing in progress)

 

学术报告及会议:

[1] G. M. Weng, Jinyang Li, Mohamed Alhabeb, Christopher Karpovich, Hang Wang, Jason Lipton, Kathleen Maleski, Jaemin Kong, Evyatar Shaulsky, Menachem Elimelech, Yury Gogotsi and André D. Taylor. "Conductive and flexible layer-by-layer MXene composite films with desired cross-functionalities for electromagnetic interference shielding applications" In The 17th International Conference on Organized Molecular Films (ICOMF). New York University, United States, 2018. (oral presentation)

[2] G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan. "Study of the electrochemical behavior of high voltage vanadium-metal hydride hybrid semi-flow battery" In The 223rd Electrochemical Society Meeting. Toronto, Canada, 2013. (oral presentation)

 

会议论文集:

[1] Trung Van Nguyen, Venkata Yarlagadda, Guangyu Lin, G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan, Comparison of acid and alkaline hydrogen-bromine fuel cell systems, ECS Transaction, 2014, 58, 29-35.

[2] G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan, Study of the electrochemical behavior of high voltage vanadium-metal hydride hybrid semi-flow battery, ECS Transaction, 2013, 7, 39-50.

[3] G. M. Weng, Chi-Ying Vanessa Li and Kwong-Yu Chan, Lead acid-NiMH hybrid battery system using gel electrolyte, ECS Transaction, 2012, 41, 133-143.