学院简介

    深圳大学高等研究院是深圳大学新成立的一个包含本科与研究生培养、侧重跨学科教学与研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。 ······

研究生课程

黄思雅

博士,研究员

联系邮箱:  huangsy@szu.edu.cn

通讯地址:深圳市南山区南海大道3688号深圳大学南区高等研究院楼721-1室, 518060

 

教育背景:

2014,清华大学,材料科学与工程,博士

2009,北京科技大学,材料科学与工程,学士

 

工作经历:

2017.10—2019.12,南方科技大学,副研究员

2014.09—2017.09,休斯顿大学&德州超导中心,博士后

 

学术兼职:

中国硅酸盐学会特种陶瓷分会青委会委员

Advanced Materials Technologies, Materials Today Physics等期刊审稿人

 

所获奖项:

2018年 深圳市海外高层次人才C类

2014年 清华大学优秀博士学位论文一等奖

2014年 清华大学优秀博士毕业生

2010-2013年 清华大学杜邦一等奖学金,星烁一等奖学金,三菱重工奖学金  

2009年 北京科技大学优秀毕业生

2009年 北京科技大学大学生创新研究项目SRT一等奖

2006-2008 年 北京科技大学校优秀三好学生(2次), 国家一等奖学金(2次),湘钢企业奖学金

2007年 全国大学生英语竞赛一等奖

 

研究兴趣:

无机半导体纳米材料,纳米原型器件,纳米传感器,功能软材料,可拉伸透明电极,柔性可穿戴传感器件

1. 高性能无机半导体纳米材料的可控合成、性能调控及纳米传感器件应用

高性能微纳传感器在图像传感、光通信、化学与生物传感、环境监测、空间探测与安全检测等诸多科学研究与工业技术领域有着十分重要的应用。研究主要围绕新型半导体纳米材料的开发及性能调控,原型器件的结构设计,以及新型传感机理等方面开展,着眼于制备并精确调控具有不同化学组分以及晶体结构的无机半导体纳米材料,实现纳米结构的有序排列和可控收集,最终实现场效应晶体管等原型器件以及各种高性能微纳传感器的搭建、性能测试及应用。

2. 新型软材料的制备及可穿戴传感应用

与人体兼容的柔性可穿戴传感器件是5G物联网时代背景下重要发展方向,开发具备柔性和可拉伸性能的新型功能软材料以及对核心元器件进行“柔性”结构设计是制备柔性传感器件的关键。研究内容包括新型软材料的制备加工、软材料的力学行为、柔性结构单元及器件的结构力学设计,以及多种柔性传感器件的开发和应用。

 

科研项目:

1,国家自然科学基金青年项目,51802141,大形变陶瓷纳米纤维的多级结构制备及柔性压力传感器应用研究,2019-2021,25万,主持,在研。

2,深圳市科技计划自由探索项目,JCY20180302174243612,可拉伸透明金属电极的低成本制备和疲劳特性研究,2019-2021,50万,主持,在研。

 

发表论文:

[1] Huang, S.,† Liu, Y.,† Zhao, Y., Ren, Z., and Guo, C. F. Flexible electronics: stretchable electrodes and their future. Advanced Functional Materials 2018, 29(6), 1805924. (IF=15.621)

[2] Huang, S., Tang, L., Salehi Najafabadi, H., Chen, S. and Ren, Z. A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy 2017, 38, 504-509. (IF=15.548)

[3] Huang, S.,† Liu, Y.,† Guo, C. F., and Ren, Z. A highly stretchable and fatigue-free transparent electrode based on an in-plane buckled Au nanotrough network. Advanced Electronic Materials 2017, 3(3). (IF=6.312)

[4] Huang, S., Guo, C.F., Zhang, X., Pan, W., Luo, X., Zhao, C., Gong, J., Li, X., Ren, Z. and Wu, H. (2015). Buckled tin oxide nanobelt webs as highly stretchable and transparent photosensors. Small 2015, 11(42), 5712-5718. (IF=10.856)

[5] Huang, S., Wu, H., Zhou, M., Zhao, C., Yu, Z., Ruan, Z. and Pan, W. A flexible and transparent ceramic nanobelt network for soft electronics. NPG Asia Materials 2014, 6(2), e86. (IF=8.052)

[6] Huang, S., Wu, H., Matsubara, K., Cheng, J. and Pan, W. Facile assembly of n-SnO2 nanobelts–p-NiO heterojunctions with enhanced ultraviolet photoresponse. Chemical Communications 2014, 50(22), 2847-2850. (IF=6.164)

[7] Matsubara, K.,† Huang, S.,† Iwamoto, M. and Pan, W. Enhanced conductivity and gating effect of p-type Li-doped NiO nanowires. Nanoscale 2014, 6(2), 688-692. (IF=6.970)

[8] Huang, S., Matsubara, K., Cheng, J., Li, H. and Pan, W. Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts. Applied Physics Letters 2013, 103(14), 141108. (IF=3.521)

[9] Huang, S., Ou, G., Cheng, J., Li, H. and Pan, W. Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning. Journal of Materials Chemistry C 2013, 1(39), 6463-6470. (IF=6.641)

[10] Huang, S., Hu, Y. and Pan, W. Relationship between the structure and hydrophobic performance of Ni–TiO2 nanocomposite coatings by electrodeposition. Surface and Coatings Technology 2011, 205(13), 3872-3876. (IF=3.192)

[11] Qiu, Z., Wan, Y., Zhou, W., Yang, J., Yang, J., Huang, J., Zhang, J., Liu, Q., Huang, S., Bai, N., Wu, Z., Hong, W., Wang, H., Guo, C. F. Ionic Skin with Biomimetic Dielectric Layer Templated from Calathea Zebrine Leaf. Advanced Functional Materials 2018, 28(37), 1802343.

[12] Wan, Y., Qiu, Z., Huang, J., Yang, J., Wang, Q., Lu, P., Yang, J., Zhang, J., Huang, S., Wu, Z., Guo, C. F. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin. Small 2018, 14(35), 1801657.

[13] Liu, Y., Zhang, J., Gao, H., Wang, Y., Liu, Q., Huang, S., Guo, C., and Ren, Z. Capillary-Force-Induced Cold Welding in Silver-Nanowire-Based Flexible Transparent Electrodes. Nano Letters 2017, 17(2): 1090-1096.

[14] Li, G., Wu, L., Li, K.F., Chen, S., Schlickriede, C., Xu, Z., Huang, S., Li, W., Liu, Y., Pun, E.Y. and Zentgraf, T. Nonlinear Metasurface for Simultaneous Control of Spin and Orbital Angular Momentum in Second Harmonic Generation. Nano Letters 2017, 17(12): 7974-7979.

[15] Liu, Y., Guo, C., Huang, S., Sun, T., Wang, Y. and Ren, Z. A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics 2015, 1(1): 52-59.

[16] Li, H., Pan, W., Zhang, W., Huang, S. and Wu, H. TiN Nanofibers: A New Material with High Conductivity and Transmittance for Transparent Conductive Electrodes. Advanced Functional Materials 2013, 23, 209.

 

学术报告及会议:

2019.06, 第五届柔性可拉伸电子国际研讨会,中国深圳,会议报告: “Skin-Electrode Interface for Epidermal Tactile Sensing”

2019.01, 亚洲工程与自然科学会议(ACENS),日本札幌,会议报告: “A Flexible Ceramic Tactile Sensor for Ultrasensitive Wearables”

2018.08, 能源与信息先进材料国际研讨会,中国深圳,会议报告: “Omnidirectionally Stretchable and Transparent Electrodes for Skin-like Sensors”

2018.06, 第四届柔性可拉伸电子国际研讨会,中国武汉,会议报告: “Ultra-Stretchable and Fatigue-Free Transparent Electrodes for Imperceptible Epidermal Electronics”