学院简介

    深圳大学高等研究院是深圳大学新成立的一个包含本科与研究生培养、侧重跨学科教学与研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。 ······

研究生课程

黄裕谦

生物学博士,深圳大学高等研究院助理教授

联系邮箱:timwong@szu.edu.cn,

通讯地址:深圳大学南山区南海大道 3688 号办公楼 352 深圳大学高等研究院学院办公室


教育背景:

2012,香港科技大学,生物学,博士

2007,香港科技大学,生物学,学士


工作经历:

2018.06—2018.09,台湾台北中央研究院生物多样性中心, 访问助理教授

2015.05—2018.04,日本秋田市秋田县立大学, 特聘助理教授

2012.03—2015.03,香港科技大学, 博士后


所获奖项:

2019年 深圳市海外高层次C类人才(孔雀计划)

2007年 香港特别行政区尤德爵士纪念奖学金


研究兴趣:

1.应用光学仪器防生物污损研究

海洋生物污损是指海洋底栖生物附着生长在各种人工表面,如船身、浮标、管路内壁等,使得海洋工业的运营成本上升,而且还会直接损害水下仪器的正常工作。据美国统计,每年因污损生物引起的经济损失达 7 亿美元。防生物污损研究针对如何有效防止幼虫附着。国内防污损研究以发掘、测试各种天然产物作为防污损涂料为主,研究利用海洋生物幼虫的趋/避光性有望成为一种相对简单且易于实施的新型海洋污损防控手段。

2.污损生物附着凝胶粘贴及生物矿化研究

污损生物分泌粘贴凝胶令自身固定在各种人工表面造成生物污损问题。通过组学分析发掘并阐明污损生物粘贴凝胶的成份以至其粘贴机理,有望为开发新颖防污损涂料提供一个全新的方向, 同时有助开发新颖的水底粘贴凝胶材料;

部份污损生物如藤壶、牡蛎、贻贝、苔藓虫等制造以碳酸钙为主的坚硬外壳,保护身体的软组织。这些生物的造壳过程一般称为生物矿化,其重要的特征是细胞分泌有机基质,控制无机矿物成核和生长,形成贝壳、骨等具有特殊组装方式和多级结构特点的生物矿化材料。通过组学分析发掘各种造壳污损生物的壳蛋白,并对其生物矿化的细胞分泌分子机理进行模拟, 有助开发不同的类生物矿物结构物质。


科研项目:

国家自然科学基金(青年科学基金项目), 41906091, 多室草苔虫幼体光诱导附着机制研究, 2020-2022, 24万, 主持,在研。

日本学术振兴会(若手研究B) , 16K1874, “Comparative Omics analysis and functional characterization of the role of nervous system in the larval settlement of barnacle cyprids larvae”, (项目序号), 2016-2018, 4.1百万(日元), 主持,已结题。


发表论文:

代表著作 (*共同第一作者; †通讯作者)

1.Wong YH, Zhang Y, Lun Janice C.Y., Qiu JW. A proteomic analysis of skeletal tissue anomaly in the brain coral Platygyra carnosa. Mar. Poll. Bull. Under review (IF: 3.78)

2.Xu Y, Zhang L, Wang KL, Zhang Y, Wong YH†. Transcriptomic analysis of the mode of action of the candidate anti-fouling compound di (1H-indol-3-yl) methane (DIM) on a marine biofouling species, the bryozoan Bugula neritina. Mar. Poll. Bull. 2020, 152:110904. (IF: 3.78)

3.Yang XX*, Wong YH*, Zhang Z*, Zhang G, Qian PY. The regulatory role of nitric oxide-p38MAPK/cGMP pathway in the larval settlement of the bryozoan Bugula neritina. Biofouling 2018, 34(5):545-556. (IF: 3.08)

4.Wong YH, Yu L, Zhang G, He LS, Qian PY. In silico prediction of neuropeptides/peptide Hormone transcripts in the Cheilostome bryozoan Bugula neritina. PLoS One 2016, 11(8): e0160271. (IF: 2.806)

5.Wong YH, Sun J, He LS, Chen LG, Qiu JW, Qian, PY. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Sci Rep. 2015, 5:16597. (IF: 4.259)

6.Wong YH, Ryu T, Seridi L, Ghosheh Y, Bougouffa S, Qian PY, Ravasi T. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep. 2014, 4: 6534. (IF: 4.259)

7.Wong YH, Wang H, Ravasi T, Qian PY. Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 2012, 7(3): e33323. (IF: 2.806)

8.Zhang H*, Wong YH* Wang H*, Chen ZF, Arellano SM, Ravasi T, Qian PY. Quantitative proteomics identify molecular targets that are crucial in larval settlement and metamorphosis of Bugula neritina. J Proteome Res. 2010, 10(1):349-360. (IF: 4.336)

9.Wong YH, Arellano SM, Zhang H, Ravasi T, Qian PY. Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. Proteome Sci. 2010, 8:25. (IF: 2.36)


共同著作

有关海洋无脊椎动物生物学

10.Kobayashi M, Wong YH, Oguro-Okano M, Dreyer N, Høeg JT, Yoshida R, Okano K. Identification, characterization, and larval biology of a rhizocephalan barnacle, Sacculina yatsui Boschma, 1936, from northwestern Japan (Cirripedia: Sacculinidae). J Crustacean Biol. 2018, In press. (IF: 1.064)

11.Yang XX, Zhang Y, Wong YH, Qian PY. HSP90 regulates larval settlement of the bryozoan Bugula neritina through NO pathway. J Exp Biol 2018, jeb-167478. (IF: 3.32)

12.Zhang Y, Yang XX, Wong YH, Qian PY. The regulatory role of arginine kinase during larval settlement of the bryozoan Bugula neritina. Mar Biol. 2018, 165(3):52. (IF: 2.136)

13.Lan Y, Sun J, Tian R, Bartlett DH, Li R, Wong YH, Zhang W, Qiu JW, Xu T, He LS, Tabata HG, Qian PY. Molecular adaptation in the world's deepest‐living animal: Insights from transcriptome sequencing of the hadal amphipod Hirondellea gigas. Mol Ecol. 2017, 26(14): 3732-3743. (IF: 6.086)

14.Zhang G, Yan GY, Yang XX, Wong YH, Sun J, Zhang Y, He LS, Xy Y, Qian PY. Characterization of arginine kinase in the barnacle Amphibalanus amphitrite and its role in the larval settlement. J Exp Zool B 2016, 326(4): 237-249. (IF: 2.387)

15.Zhang G, He LS, Wong YH, Xu Y, Zhang Y, Qian PY. p38 MAPK regulates PKAα and CUB-serine protease in Amphibalanus amphitrite cyprids. Sci Rep. 2015, 5:14767. (IF: 4.259)

16.Zhang G, He LS, Wong YH, Xu Y, Zhang Y, Qian PY. Chemical Component and Proteomic Study of the Amphibalanus (= Balanus) amphitrite Shell. PLoS One 2015, 10(7):e0133866. (IF: 2.806)

17.Zhang G, He LS, Wong YH, Yu L, Qian PY. siRNA transfection in larvae of the barnacle Amphibalanus amphitrite. J Exp Biol. 2015, 218(16):2505-2509. (IF: 3.32)

18.Lin HC, Wong YH, Tsang LM, Chu KH, Qian PY, Chan BKK. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology. Biofouling 2014, 30(2):169-181. (IF: 3.08)

19.Chen ZF, Zhang H, Wang H, Matsumura K, Wong YH, Ravasi T, Qian PY. Quantitative proteomics study of larval settlement in the barnacle Balanus amphitrite. PLoS One 2014, 9(2): e88744. (IF: 2.806)

20.Zhang G, He LS, Wong YH, Qian PY. MKK3 was Involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. PLoS One 2013, 8(7):e69510.  (IF: 2.806)

21.Chandramouli, KH, Zhang Y, Wong YH, Qian PY. Comparative glycoproteome analysis: Dynamics of protein glycosylation during metamorphic transition from pelagic to benthic life stages in three invertebrates. J Proteome Res. 11(2):1330-1340. 2011. (IF: 4.336)

22.Wang H, Zhang H, Wong YH, Voolstra C, Ravasi T, Bajic V, Qian PY. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics 2010, 10(16):2972-2981. (IF: 4.041)

23.Qian PY, Wong YH, Zhang Yu. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide. Proteomics 2010, 10(19):3435-3446. (IF: 4.041)

24.Thiyagarajan V, Wong T, Qian PY. 2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates. J Proteome Res. 2009, 8(6): 2708-2719. (IF: 4.336)

有关微生物生态学

25.Cai L, Tian RM, Zhou G, Tong H, Wong YH, Zhang W, Chui APY, James Y. Xie, Xia J, Qiu JW, Ang PO, Liu S, Huang H, Qian PY. Exploring coral microbiome assemblages in the South China Sea. Sci Rep. 2018, 8(1):2428. (IF: 4.259)

26.Cai L, Zhou G, Tian RM, Tong H, Zhang W, Sun J, Ding W, Wong YH, Xia J, Qiu JW, Liu S, Huang H, Qian PY. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep. 2017, 7(1):9320. (IF: 4.259)

27.Tian RM, Zhang W, Cai L, Wong YH, Ding W, Qian PY. Genome Reduction and Microbe-Host Interactions Drive Adaptation of a Sulfur-Oxidizing Bacterium Associated with a Cold Seep Sponge. mSystems 2017, 2(2): e00184-16. (IF: 6.280)

28.Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 2015, 3:e890. (IF: 2.177)

29.Zhang W, Wang Y, Bougouffa S, Tian RM, Cao HL, Li YX, Cai L, Wong YH, Zhang G, Zhou G. Synchronized dynamics of bacterial niche specific functions during biofilm development in a cold seep brine pool. Environ Microbiol. 2015, 17(10):4089-4104. (IF: 5.395)

30.Gao ZM, Wang Y, Tian RM, Wong YH, Batang ZB, Al-Suwailem AM, Bajic VB, Qian PY. Symbiotic Adaptation Drives Genome Streamlining of the Cyanobacterial Sponge Symbiont “Candidatus Synechococcus spongiarum”. MBio 2014, 5(2):e00079-14. (IF: 6.956)

31.Gao ZM, Wang Y, Lee OO, Tian RM, Wong YH, Bougouffa S, Batang, Zenon; Al-Suwailem A, Lafi FF, Bajic VB. Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues. Microbial Ecol. 2014, 68(3):621-632. (IF: 3.630)

32.Wang Y, Zhang WP, Cao HL, Shek CS, Tian RM, Wong YH, Batang ZB, Al-Suwailem A, Qian PY. Diversity and distribution of eukaryotic microbes in and around a brine pool adjacent to the Thuwal cold seeps in the Red Sea. Front Microbiol. 2014, 5:37. (IF: 4.076)

33.Zhang WP, Wang Y, Tian RM, Bougouffa S, Yang B, Cao HL, Zhang G, Wong YH, Xu W, Batang ZB. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system. Sci Rep. 2014, 4:6647. (IF: 4.259)

34.Jin T, Zhang T, Ye L, Lee OO, Wong YH, Qian PY. Diversity and quantity of ammonia-oxidizing Archaea and Bacteria in sediment of the Pearl River Estuary, China. Appl Microbiol Biot. 2011, 90(3):1137-1145. (IF: 3.420)

35.Yang, Jiangke; Sun, Jin; Lee OO, Wong YH, Qian, PY. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquat Microb Ecol. 2011, 62(3):231. (IF: 2.35)

36.Qian PY, Wang Y, Lee OO, Lau SCK, Yang J, Lafi FF, Al-Suwailem A, Wong YH. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing. ISME J. 2011, 5(3):507-518. (IF: 9.664)

37.Wang Y, Yang J, Lee OO, Dash S, Lau SCK, Al-Suwailem A, Wong YH, Danchin A, Qian PY. Hydrothermally generated aromatic compounds are consumed by bacteria colonizing in Atlantis II Deep of the Red Sea. ISME J. 2011, 5(10):1652-1659. (IF: 9.664)

38.Lee OO, Chui, Pui Yi; Wong YH, Pawlik, Joseph R; Qian PY. Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea zeai. Appl Environ Microbiol. 2009, 75(19):6147-6156. (IF: 3.668)

39.Lee OO, Wong YH, Qian PY. Inter-and intraspecific variations of bacterial communities associated with marine sponges from San Juan Island, Washington. Appl Environ Microbiol. 75(11):3513-3521. 2009. (IF: 3.668)

有关防污研究和毒理学

40.Huang XZ, Xu Y, Zhang YF, Zhang Y, Wong YH, Han Z, Yin Y, Qian PY. Nontoxic piperamides and their synthetic analogues as novel antifouling reagents. Biofouling 2014, 30(4):473-481. (IF: 3.08)

41.Chen L, Zhang H, Sun J, Wong YH, Han Z, Au DWT, Bajic VB, Qian PY. Proteomic changes in brain tissues of marine medaka (Oryzias melastigma) after chronic exposure to two antifouling compounds: Butenolide and 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT). Aquat Toxicol. 2014, 157:47-56. (IF: 4.129)


书本章节

1.Okano K, Wong YH, Takahashi Y, Kikuchi A, Nogata Y, and Oguro-Okano M, Chapter 5 - Larval Cementation in the Barnacles, Megabalanus Rosa, In Barnacles: Recent Progress in Biology and Antifouling, edited by Ryusuke Kado, Haruo Mimura and Noriyuki Endo. Nova Science Publishers, Inc. March, 2018. ISBN: 978-1-53613-444-5.


学术会议论文集

1.Wong YH, Ozakia N, Zhang WP, Sun J, Yoshimura E, Oguro-Okano M, Nogata Y, Lin HC, Chan BKK, Qian PY, Okano K. Identification of barnacle shell proteins by transcriptome and proteomic approaches, In Biomineralization - From Molecular and Nano-structural Analyses to Environmental Science (pp. 105-112), edited by Kazuyoshi Endo, Toshihiro Kogure and Hiromichi Nagasawa. Springer Nature Singapore Pte Ltd.


学术报告及会议:

2019.05 甲壳动物协会年中会议2019, 香港中文大学, 大会全体特邀报告: 藤壶幼虫“组学”分析研究 (“Omics” analyses overcome the bottleneck in barnacle larval settlement study.)

2019.05 甲壳动物协会年中会议2019, 香港中文大学, 邀请报告: 寄生藤壶内部结构分子和形态学特征研究(Molecular and Morphological Specialization of The Endoparasitic Structure, Interna of The Parasitic Barnacle Sacculina yatsui.)

2018.11 第十三届生物矿化研讨会, 日本东京大学大気海洋研(千叶県柏市), 邀请报告: 藤壶壳结构和壳蛋白的变异和保守性研究(Variations and conservations in barnacle shell structure and shell protein.)

2018.07高登科学研究大会(生物矿化), 美国新罕布什尔州新伦敦, 邀请报告: 藤壶壳形成的分子和细胞机制研究(Molecular and Cellular Mechanism Involved in Barnacle Shell Formation.)

2017.10 第十四届国际生物矿化研讨会(BIOMIN XIV), 日本筑波, 邀请报告: 藤壶壳蛋白转录组和蛋白质组学研究 (Comprehensive profiling of barnacle shell proteins by an integrated transcriptomic and proteomic approach.)

2017.10日本付着生物学会2017研讨会, 日本东京海洋大学(品川), 邀请报告: “组学”方法和比较分析对付着生物研究的重要性 (The importance of integrating "Omics" approaches and comparative analysis in the study of novel proteins in fouling organisms: a case study on Megabalanus rosa shell formation.)