学院简介

    深圳大学高等研究院是深圳大学新成立的一个包含本科与研究生培养、侧重跨学科教学与研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。 ······

人员信息

彭焘(赵伟课题组)

博士后

ResearchGate: https://www.researchgate.net/profile/Tao_Peng7

Scopus: https://www.scopus.com/authid/detail.uri?authorId=57203905911

 

教育背景

2014.09 – 2018.08 博士 物理化学与分析化学 索邦大学

2014.09 - 2018.08 博士(联培) 环境工程 温莎大学

2010.09 – 2013.08 硕士 材料科学与工程 武汉理工大学

2006.09 – 2010.08 学士 材料科学与工程 成都理工大学

 

工作经历

2019.05-至今 博士后 深圳大学高等研究院

2018.08-2019.04 博士后 温莎大学环境工程

 

研究兴趣

光电化学催化剂的合成与应用

新能源材料合成:有机金属框架、过渡金属、过渡金属氧化物、石墨烯、多孔碳材料

氢能、二氧化碳还原、太阳能燃料合成

 

所参与科研项目

2014-2018 加拿大自然科学和工程研究理事会(NSERC):氢能(项目编号:261797-2009)250万

2013-2018 欧盟项目:Nano-structured TiON Photo-Catalytic Membranes for Water Treatment(项目编号:FP7 NMP NATIOMEM 245513)2800万

2013-2014 湖北省自然基金重点项目:无定形碳化物-氯化法合成石墨烯及转化机制研究 (编号:2013CFA082)40万

2012-2014 国家973课题:有序化膜电极微-纳结构构建与界面极化损失研究(编号:2012CB215504) 495万

2010-2013 国家自然科学基金项目:质子导体高分子保护碳纳米管载Pt催化剂合成及稳定机制(项目编号:50972112) 43万

 

所获奖励

2015    Mitacs Globalink Research Award,加拿大研究奖学金

2014    Ontario Trillium Scholarship,加拿大延龄草奖学金

2012    武汉理工大学优秀研究毕业生

2008    成都理工大学优秀学生干部

 

学术和教学活动

2018 – 至今 会员, America Chemistry Society, Washington, DC, U.S

2017 - 至今审稿, Journal of Engineering Science and Technology

2014 – 2018助教(Teaching Assistant),法国索邦大学环境工程学科课程8次助教

2014 - 2016副主席, Water Environment Federation, VA, U.S.

 

发表论文

[1] T. Peng, J. Pulpytel, I. Horovitz, A.K. Jaiswal, D. Avisar, H. Mamane, J.A. Lalman, F. Arefi-Khonsari, One-step deposition of nano-Ag-TiO2 coatings by APPJ for water treatment: Application to trace pharmaceutical removal by solar photocatalysis, Plasma Process. Polym., ppap.201800213 (2019) (In press).

[2] T. Peng, J.A. Lalman, TiO2 nanomaterials for enhanced photocatalytic properties, in: D. Andrews (Ed.) Catalysis by metal complexes and nanomaterials: fundamentals and applications, ACS Symposium Series, 2019, (Accepted).

[3] T. Peng, J. Zhang, S. Ray, F.S. Ghareh Bagh, H. Fakhouri, F. Arefi-Khonsari, J.A. Lalman, Optimizing one-dimensional TiO2 for photocatalytic hydrogen production from a water-ethanol mixture and other electron donors, J. Environ. Chem. Eng., 7 (2019) 102868.

[4] T. Peng, S. Ray, S.S. Veeravalli, J.A. Lalman, F. Arefi-Khonsari, The role of hydrothermal conditions in determining 1D TiO2 nanomaterials bandgap energies and crystal phases, Mater. Res. Bull., 105 (2018) 104-113.

[5] T. Peng, J. Zhang, S. Ray, H. Fakhouri, X. Xu, F. Arefi-Khonsari, J.A. Lalman, Enhanced TiO2 nanorods photocatalysts with partially reduced graphene oxide for degrading aqueous hazardous pollutants, Environ. Sci. Pollut. Res., 25 (2018) 17553-17564.

[6] T. Peng, J. Zhang, S. Ray, H. Fakhouri, S.S. Veeravalli, F. Arefi-Khonsari, J.A. Lalman, Evaluating the hydrothermal synthesis of quasi-one-dimensional TiO2 nanomaterials for the photocatalysis of selected organic chemicals, Desalin. Water Treat., (2018) 1-13.

[7] M. Bao, I.S. Amiinu, T. Peng, W. Li, S. Liu, Z. Wang, Z. Pu, D. He, Y. Xiong, S. Mu, Surface evolution of PtCu alloy shell over Pd nanocrystals leads to superior hydrogen evolution and oxygen reduction reactions, ACS Energy Lett., 3 (2018) 940-945.

[8] J. Zhang, H. Zhou, J. Zhu, P. Hu, C. Hang, J. Yang, T. Peng, S. Mu, Y. Huang, Facile synthesis of defect-rich and S/N co-doped graphene-like carbon nanosheets as an efficient electrocatalyst for primary and all-solid-state Zn–air batteries, ACS Applied Materials & Interfaces, 9 (2017) acsami.7b04665-04635.

[9] H. Wu, T. Peng, Z. Kou, K. Cheng, J. Zhang, J. Zhang, T. Meng, S. Mu, In situ constructing of ultrastable ceramic@graphene core-shell architectures as advanced metal catalyst supports toward oxygen reduction, J. Energy Chem., 26 (2017) 1160-1167.

[10] J. Zhang, H. Zhou, X. Liu, J. Zhang, T. Peng, J. Yang, Y. Huang, S. Mu, Keratin-derived S/N co-doped graphene-like nanobubble and nanosheet hybrids for highly efficient oxygen reduction, J. Mater. Chem. A, 4 (2016) 15870-15879.

[11] D. He, Y. Rong, Z. Kou, S. Mu, T. Peng, R. Malpass-Evans, M. Carta, N.B. McKeown, F. Marken, Intrinsically microporous polymer slows down fuel cell catalyst corrosion, Electrochem. Commun., 59 (2015) 72-76.

[12] H. Wu, T. Peng, Z. Kou, J. Zhang, K. Cheng, D. He, M. Pan, S. Mu, Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction, Chin. J. Catal., 36 (2015) 490-495.

[13] T. Peng, Z. Kou, H. Wu, S. Mu, Graphene from amorphous titanium carbide by chlorination under 200oC and atmospheric pressures, Sci. Rep., 4 (2014) 192-197.

[14] P. Wu, H. Lv, T. Peng, D. He, S. Mu, Nano Conductive Ceramic Wedged Graphene Composites as Highly Efficient Metal Supports for Oxygen Reduction, Sci. Rep., 4 (2014) 345-346.

[15] K. Cheng, D. He, T. Peng, H. Lv, M. Pan, S. Mu, Porous graphene supported Pt catalysts for proton exchange membrane fuel cells, Electrochim. Acta, 132 (2014) 356-363.

[16] H. Li, X. Zhang, D. He, T. Peng, S. Mu, Carbon-Embedded Carbon Nanotubes as Supports of Polymer Electrolyte Membrane Fuel Cell Catalysts, J. Nanosci. Nanotechnol., 14 (2014) 6929-6933.

[17] T. Peng, H. Lv, D. He, M. Pan, S. Mu, Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure, Sci. Rep., 3 (2013) 197-197.

[18] D. He, K. Cheng, T. Peng, M. Pan, S. Mu, Graphene/carbon nanospheres sandwich supported PEM fuel cell metal nanocatalysts with remarkably high activity and stability, J. Mater. Chem. A, 1 (2013) 2126-2132.

[19] J. Yang, X. Kang, D. He, T. Peng, L. Hu, S. Mu, Hierarchical shuttle-like Li2FeSiO4 as a highly efficient cathode material for lithium-ion batteries, J. Power Sources, 242 (2013) 171-178.

[20] J. Yang, X. Kang, L. Hu, X. Gong, D. He, T. Peng, S. Mu, Synthesis and electrochemical performance of Li2FeSiO4/C/carbon nanosphere composite cathode materials for lithium ion batteries, J. Alloys Compd., 572 (2013) 158-162.

[21] H. Lv, T. Peng, P. Wu, M. Pan, S. Mu, Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance, J. Mater. Chem., 22 (2012) 9155-9156.

[22] D. He, K. Cheng, T. Peng, X. Sun, M. Pan, S. Mu, Bifunctional effect of reduced graphene oxides to support active metal nanoparticles for oxygen reduction reaction and stability, J. Mater. Chem., 22 (2012) 21298-21297.

[23] D. He, K. Cheng, H. Li, T. Peng, F. Xu, S. Mu, M. Pan, Highly Active Platinum Nanoparticles on Graphene Nanosheets with a Significant Improvement in Stability and CO Tolerance, Langmuir, 28 (2012) 3979-3986.

[24] H. Lv, N. Cheng, T. Peng, M. Pan, S. Mu, High stability platinum electrocatalysts with zirconia–carbon hybrid supports, J. Mater. Chem., 22 (2012) 1135-1141.