学院简介

深圳大学高等研究院是深圳大学于2014年成立的一个包含本科与研究生培养、侧重跨学科教学与学术研究的校内综合办学单位。作为深圳大学内部探索全面改革创新的学术特区,高等研究院与香港和海外著名高校合作,借鉴国内外研究型大学通行的管理模式,引进具有一流视野的资深教授和发展潜力的青年教师,营造与国际接轨的学术氛围和培养环境,开展卓越的教学、研究和管理工作。

Home

​Xiaolong Yang (Dr. Wu Li’s group )

Postdoctor

Email address: xiaolongyang1990@gmail.com

Google Scholar:http://scholar.google.com/citations?user=2hSEWTIAAAAJ&hl=en

 

Educational background and research experience:

Jul. 2019 - present     Postdoctoral fellow in the Institute for Advanced Study, Shenzhen University, China

Mar. 2015 - Jun. 2019   Ph.D in Materials Science and Engineering, Xi'an Jiaotong University, China

Oct. 2017 - Oct. 2018   Visiting Ph.D student in the School of Mechanical Engineering at Purdue University, US.

Sep. 2013 - Mar. 2015   M.S. in Condensed Matter Physics, Xi'an Jiaotong University, China

Sep. 2009 - Jun. 2013   B.S. in Materials Physics, Lanzhou University, China

 

Research interests:

Theoretical calculation of phonon heat transfer at micro&nano scale; Multi-scale simulation based on electronic structure; Electron-phonon coupling; Radiation heat transfer; Thermoelectric materials; Surface adsorption; Nanomechanics.

 

Publications:

1. X. Yang, J. Lin, G. Qiao and Z. Wang, “Atomistic mechanisms governing stability change of zinc antimony thermoelectrics”, Appl. Phys. Lett. 106, 013904 (2015).

2. X. Yang, J. Carrete and Z. Wang, “Role of force-constant difference in phonon scattering by nano-precipitates in PbTe”, J. Appl. Phys. 118, 085701 (2015).

3. Z. Zhu#, X. Yang#, M. Huang, Q. He, G. Yang and Z. Wang, Mechanisms governing phonon scattering by topological defects in graphene nanoribbons, Nanotechnology 27, 055401 (2016).

4. X. Yang, J. Carrete and Z. Wang, Optimizing phonon scattering by nanoprecipitates in lead chalcogenides, Appl. Phys. Lett. 108, 113901 (2016).

5. Z. Wang, X. Yang, D. Feng, H. Wu, L. Zhao, J. Carrete, C. Li, S. Cheng, G. Yang and J. He, Understanding phonon scattering by nanoprecipitates in potassium-doped lead chalcogenides, ACS Appl. Mater. Interfaces 9(4), 3686–3693 (2017).

6. T. He#, W. Wang#, X. Yang#, Z. Wang, Z. Shan, M. Jin, and Y. Yin, Inflating hollow nanocrystals through a repeated Kirkendall cavitation process, Nature Communications 8, 1261 (2017).

7. X. Yang and W. Li, Optimizing phonon scattering by tuning surface- interdiffusion-driven intermixing to break the random-alloy limit of thermal conductivity, Phys. Rev. Mater. 2, 015401 (2018).

8. T. Feng, X. Yang, Xiulin Ruan. Phonon anharmonic frequency shift induced by four-phonon scattering calculatedfrom first principles. J. Appl. Phys. 124, 145101 (2018).

9. Z. Wu, X. Yang, Z. Wang. Size effect on the spontaneous coalescence of nanowires. Nanotechnology 30, 245601(2019).

10. S. Huang#, M. Segovia#, X. Yang#, Y. R. Koh, Y. Wang, D Ye Peide, W. Wu, A. Shakouri, X. Ruan, X. Xu. Anisotropic thermal conductivity in 2D tellurium, 2D Materials 7 (1), 015008 (2019).

11. X. Yang, T Feng, J Li, X Ruan, Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature, Phys. Rev. B 100, 245203 (2019).

12. T. Feng, X. Wu, X. Yang, P. Wang, L. Zhang, X. Du, X. Wang, S. T. Pantelides, Thermalconductivity of HfTe5: a critical revisit, Adv. Func. Mater. 30, 1907286 (2020). (Selected as a Cover Paper)

13. T. Feng, X. Wu, X. Yang, P. Wang, L. Zhang, X. Du, X. Wang, S. T. Pantelides, Hafnium Pentatelluride: Thermal Conductivity of HfTe5: A Critical Revisit (Adv. Funct. Mater. 5/2020). Adv. Func. Mater. 30, 2070032 (2020).

14. Z. Tong, X. Yang, T. Feng, H. Bao, and X. Ruan, First-principles predictions of temperature-dependent infrared dielectric function of polar materials by including four-phonon scattering and phonon frequency shift, Phys. Rev. B 101, 125416 (2020).

15. X. Yang, T. Feng, J. S. Kang, Y. Hu, J. Li, and X. Ruan, Observation of strong higher-order lattice anharmonicity in Raman and infrared response, Phys. Rev. B 101, 161202(R) (2020). (Selected as a Editors’ Suggestion)

16. Y. Luo, X. Yang, T. Feng, J. Wang, X. Ruan, Vibrational hierarchy leads to dual-phonon transport in low thermal conductivity crystals, Nature Communications, accepted (2020).