loading..
首页   >   师资队伍   >   专职教师   >  

正文

蔡兴科

博士,研究员

cai.xingke#szu.edu.cn

致知楼

课题组链接:http://www.2dceramics.com/#/Index


教育背景:

2015,日本筑波大学,材料科学与工程,博士

2012,中国科学院金属所,材料科学与工程,硕士

2009,中南大学,材料科学与工程,学士


工作经历:

2016.09—2018.09,清华伯克利深圳学院/盖姆石墨烯研究中心,助理研究员

2015.11—2016.05,加州大学美熹德分校,博士后

2012.08-2015.07,日本国立材料研究所,初级研究员


研究方向:

(1) 陶瓷基二维材料的宏量剥离制备

(2)离子电池,金属空气电池及传感等应用


在研项目:

1. 国家青年基金,24万,2021年1月-2023年12月;

2. 深圳市孔雀启动经费,450万,2021年-2023年12月;

3. 中广核横向课题,98万, 2020年5月-2022年6月;

4. 广东省面上项目, 10万, 2022年1月-2023年12月;

5. 深圳市稳定支持面上项目,30万,2021年1月-2023年12月;

6. 深圳大学-台北科技大学联合项目,6万,2022年1月-2022年12月;

7. 深圳市孔雀团队, 2500万元, 2021至今,核心成员。


所获奖项与兼职:

深圳市海外高层次人才计划:孔雀计划B类

南山区领航人才

Frontiers in Chemistry和Nanomaterials客座编辑;


目前课题组成员

博士后

(1) 宗恺 (斯蒂文森理工学院博士)

代表性工作:ACS Materials Letters, 2020, 2(7): 721-726;Chemistry of Materials, 2019, 31(14): 4953-4970;Chemistry of Materials, 2017, 29(17): 7571-7578; Crystal Growth & Design, 2019, 19(6): 3461-3468

(2) 赵杰 (南京大学博士)

代表性工作:Nano Energy, 2020, 76: 105026;Science of the Total Environment 809 (2022) 151114; Composites Science and Technology 99 (2014) 147-153

(3)Ali Saad(中科院宁波所一站博后)

代表性工作:Appl. Catal. B, 2021, 298, 120529;Small 2021, 18, 2104303;Small, 2022, 2201067;Nano-Micro Letters, 2020, 12(1): 0-79;

(4) Waseem Raza (大连理工博士)

代表性工作:Nano Energy, 2018, 52: 441-473; Trends in Analytical Chemistry, 2019, 120, 115654; Nano Energy, 57, 879-902; Separation and Purification Technology, 2021, 262:118338

(5) Arshad Hussain (大连化物所博士)

代表性工作:ACS Applied Material & Interfaces, 2020, 12, 50, 55809–55819;Journal of Membrane Science, 2020,605, 118108;Journal of Membrane Science, 2022, in revision

(6) Muhammad Asim Mushtaq (北京化工大学博士)

代表性工作:JMCA, 2021, 9, 2742-2753; Science Bulletin, 2022, in revision; Appl. Catal. B, 2022, in revision.

研究生

研三: Akaash Babar;研二:李莹(吉林大学本科), 骆庚(西北农林本科);研一:刘威(深大保研),宋兆祺(深大保研)

联合培养生

博士:吴燕燕(哈工大深圳);硕士:邓永贵(深圳大学),吕家乐(深圳大学),叶鹏飞(深圳大学),谢章余(深圳大学)



论文:

(1) Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides, Journal of Colloid and Interface Science, 2022, 10.1016/j.jcis.2022.05.082.

(2) Mesoporous IrNiTa Metal Glass Ribbon as a Superior Self-standing Bifunctional Catalyst for Water Electrolysis, Chemical Engineering Journal, 2022, 431, 134210

(3) Modulating the electronic structure of zinc single atom catalyst by P/N coordination and Co2P supports for efficient oxygen reduction in Zn-Air battery, Chemical Engineering Journal, 2022, 440, 135928

(4) Understanding the Surface Reconstruction on Ternary WxCoBx for Water Oxidation and Zinc–Air Battery Applications, Small, 2022, 2201067.

(5) Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications, Energy Storage Materials, 2022, 45, 504-540

(6) Thin-Film Composite Membranes with a Hybrid Dimensional Titania Interlayer for Ultrapermeable Nanofiltration, Nano Lett. 2022, 22, 1039-1046.

(7) Controlled Synthesis of Perforated Oxide Nanosheets with High Density Nanopores Showing Superior Water Purification Performance, ACS Appl. Mater. Interfaces 2022, 14, 18513-18524.

(8) Ternary Mo2NiB2 as a Superior Bifunctional Electrocatalyst for Overall water splitting, Small 2021, 18, 2104303

(9) Synthesis design of interfacial structure for highly reversible lithium deposition, Journal of Materials Chemistry A, 10.1039/D1TA06742G.

(10) Promoting the Reversibility of Lihitum ion/Lithum Metal Hybrid Graphite Anode by Regulating Solid Electrolyte Interface. Nano Energy, 2021, 90, 106510.

(11) Photo-promoted in situ reduction and stabilization of Pd nanoparticles by H2 at photoinsensitive Sm2O3 nanorods, Journal of Colloid and Interface Science, 2022, 607, 479-487.

(12) Understanding the Catalytic Sites in Porous Hexagonal Boron Nitride for the Epoxidation of Styrene, ACS Catalysis, 2021, 11, 8872-8880.

(13) Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst greatly enhancing oxygen evolution reaction (OER) performance, Applied Catalysis B: Environmental, 2021, 298, 120529.

(14) Partially oxidized cobalt species in nitrogen-doped carbon nanotubes: Enhanced catalytic performance to water-splitting, International Journal of Hydrogen Energy, 2021, 46, 8864-8870.

(15) Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery, Materials Science and Engineering B, 2021, 273, 115417.

(16) Single noble metal atoms doped 2D materials for catalysis, Applied Catalysis B: Environmental, 2021, 297, 120389.

(17) Recent Progress on the Silica Aerogel Monoliths: Synthesis, Reinforcement and Applications, Journal of Materials Science 2021, 56, 10812-10833.

(18) A Synergetic Promotion of Sodium-Ion Storage in Titania Nanosheets by Superlattice Assembly with Reduced Graphene Oxide and Fe-Doping Strategy, Chemical Engineering Jounal, 2021, 407, 127198.

(19) In situ Observation of Interface Evolution on Graphite Anode by Scanning Electrochemical Microscopy. ACS Appl. Mater. Interfaces 2020, 12, 37047–37053.

(20) Polymer “Tape”-Assisted Ball-Milling Method Fabrication Few-Atomic-Layered Bismuth for Improving K+/Na+ Storage. Energ. Environ. Mater., 2021, 4, 421-427.

(21) Nano-engineering of Prussian Blue Analogues to Core-shell Architectures: Enhanced Catalytic Activity for Zinc-air Battery, Journal of Colloid and Interface Science, 2020, 578, 89-95.

(22) Cationic Hexagonal Boron Nitride, Graphene, and MoS2 Nanosheets Heteroassembled with Their Anionic Counterparts for Photocatalysis and Sodium Ion Battery Applications. ACS Applied Nano Materials, 2020, 3, 5327–5334.

(23) A metal free electrocatalyst for high-performance zinc-air battery application with good resistance towards poisoning species, Carbon, 2020, 164, 12-18.

(24) Nano-engineered directed growth of Mn3O4 quasi-cubes on N-doped polyhedrons: efficient electrocatalyst for oxygen reduction reaction, International Journal of Hydrogen Energy, 2020, 45, 12903-12910.

(25) An Efficient Synthetic Method to Prepare High-Performance Ni-rich LiNi0.8Co0.1Mn0.1O2 for Lithium-Ion Batteries, ACS Applied Energy Materials, 2019, 2, 10, 7403-7411.

(26) Photocharge trapping in two-sheet heterostructures fabricated from colloidal two-dimensional materials, ACS Applied Nano Materials, 2019, 2, 6378-6386.

(27) Mass Production of Two-Dimensional Materials by Intermediate-Assisted Grinding Exfoliation, National Science Review, 2020, 7, 324-332.

(28) Understanding the Cathode Electrolyte Interface Formation in Aqueous Electrolyte by Scanning Electrochemical Microscopy, Journal of Materials Chemistry A, 2019, 7, 12993-12996.

(29) Sandwiching h-BN monolayer film between Sulfonated Poly (ether ether ketone) and Nafion for Proton Exchange Membranes with Improved Ion Selectivity, ACS Nano, 2019, 13, 2094–2102.

(30) Polymer Nanocomposites with Interpenetrating Gradient Structure exhibiting Ultrahigh Discharge Efficiency and Energy Density, Advanced Energy Materials, 2019, 9, 1803411.

(31) Facile 3D Boron Nitride Integrated Electrospun Nanofibrous Membranes for Purging Organic Pollutants, Nanomaterials, 2019, 9, 1383.

(32) Novel Stretchable Thermochromic Transparent Heaters Designed for Smart Windows Defrosters Applications by Spray Coating Silver Nanowire, RSC Advance, 2019, 9, 35786-35796.

(33) Two dimensional nanomaterials-based polymer composites: fabrication and energy storage applications, Advances in Polymer Technology, 2019, 2019, 15.

(34) Preparation of 2D Material Dispersions and Their Applications, Chemical Society Reviews, 2018, 47, 6224-6266.

(35) Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes, ACS Nano, 2018, 12, 4565-4573

(36) Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy, Nanoscale, 2017, 9, 17859–17864.

(37) Efficient photoinduced charge accumulation in reduced graphene oxide coupled with titania nanosheets to show highly enhanced and persistent conductance, ACS Applied Materials & Interfaces, 2015, 7, 11436–11443.

(38) Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites, Journal of The American Chemical Society, 2015, 137, 2844-2847. (JACS spotlights)

(39) Superlattice assembly of graphene oxide (GO) and titania nanosheets: fabrication, in-situ photocatalytic reduction of GO and highly improved carrier transport, Nanoscale, 2014, 6, 14419-14427.

(40) Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers, Advanced Materials, 2013, 25, 4625-4630.

(41) Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge, Carbon, 2012, 50, 2726-2730.


书籍

(1) Graphene: Preparation and Applications. Man Song, Changwei Cai, Xuexiong Li, Zhihong Chen* and Xingke Cai*. Ambipolar Materials and Devices, RSC, 2020, Page 100-123.

(2) Carbon Nanotube Synthesis and Applications. Arvind Kumar, Xuexiong Li, Changwei Cai, Zhihong Chen* and Xingke Cai*. Ambipolar Materials and Devices, RSC, 2020, Page 174-213.

(3) Nanostructured Semiconductors for Hydrogen Production through Photocatalyatic Water Splitting. Hajera Gulla, Waseem Razab, Arshad Hussainb, Cai Xingkeb*. Handbook of Emerging Materials for Sustainable Energy, Elsevier, 2022, xx.


地址:深圳市南山区白石路3883号深圳大学粤海校区致知楼703学院办公室 518060

联系电话:0755-26492572

版权所有 © 深圳大学高等研究院